Philosophy 211 Sample In-Class Exam 2

I. Complete these proofs. There are no additional assumptions. (14)

A. $\exists x Px \rightarrow \exists x Qx, \forall x \sim (Qx \& Sx)$ $\downarrow \forall x (Px \rightarrow \exists y \sim Sy)$			В. ∃у	. $\exists y \forall x Rxy, \exists x \forall y Rxy, $	
1	$(1) \exists x P x \rightarrow \exists x Q x$	А	1	(1)∃y∀xRxy	А
2	(2) $\forall x \sim (Qx \& Sx)$	А	2	(2) $\exists x \forall y Rxy$	А
3	(3) Pa	А	3	(3) ∀xRxa	А
	(4) $\exists x P x$		4	(4) ∀yRby	А
	$(5) \exists xQx$			(5) Rca	
6	(6) Qb	А		(6) Rbc	
	(7) ~(Qb & Sb)			(7) Rbc & Rca	
	(8) ~Qb v ~Sb			(8) $\exists y (Rbc \& Rcy)$	
	(9) ~Sb			(9) $\exists x \exists y (Rxc \& Rcy)$)
	(10) ∃y~Sy			(10) $\exists x \exists y (Rxc \& Rc)$	y)
	(11) ∃y~Sy			(11) $\exists x \exists y (Rxc \& Rc)$	y)
	(12) $Pa \rightarrow \exists y \sim Sy$			(12) $\forall z \exists x \exists y (Rxz \& z)$	Rzy)
	(13) $\forall x(Px \rightarrow \exists y \sim Sy)$				

II. Find the errors in each of these proofs and explain why they are errors. (10)

A. $\forall x \exists y (Px \rightarrow Qy) \models \forall x Px \rightarrow \forall y Qy$

1	(1) $\forall x \exists y (Px \rightarrow Qy)$	А
2	(2) $\forall x P x$	А
1	$(3) \exists y(Pa \rightarrow Qy)$	$1 \forall E$
4	$(4) \operatorname{Pa} \to \operatorname{Qb}$	А
2	(5) Pa	$2 \forall E$
2,4	(6) Qb	4,5 → E
2,4	(7) ∀yQy	6 ∀I
1,2	(8) ∀yQy	3,7 ∃E(4)
1	$(9) \forall x P x \to \forall y Q y$	$8 \rightarrow I(2)$

B. $\forall x(Dx \rightarrow Ax) \models \forall x(\exists y(Hxy \& Dy) \rightarrow \exists z(Hxz \& Az))$

1	(1) $\forall x(Dx \rightarrow Ax)$	А	
2	(2) Hab & Db	Α	
2	(3) Hab	2 &E	
2	(4) Db	2 &E	
1	(5) $Db \rightarrow Ab$	3 &E	
1,2	(6) Ab	4 &E	
1,2	(7) Hab & Ab	3,6 &I	
1,2	(8) ∃z(Haz & Az)	7 ∃I	
1	(9) (Hab & Db) $\rightarrow \exists z(\text{Haz & Az}) \otimes I(2)$		
1	(10) $\exists y(\text{Hay}\& \text{Dy}) \rightarrow \exists z(\text{Haz}\&\text{Az}) 9 \exists I$		
1	(11) $\forall x (\exists y (Hxy \& D))$	$Dy) \rightarrow \exists z(Hxz \& Az)) \ 10 \ \forall I$	

III. Paraphrase the following English sentences into Predicate Logic using the following translation scheme: (25)

A α : α is on Team A B α : α is on Team B D $\alpha\beta$: α defeated β m: Mary t: Tom

1. Tom did not defeat everyone on Team A who was defeated by Mary.

2. If no one on Team A defeated Tom, then there is someone on Team A who did not defeat Mary.

3. Every member of Team A who defeated Mary was defeated by at least one member of Team B. (NOTE: I intend this to allow that different members of Team A who defeated Mary may have been defeated by different members of Team B.)

4. If anyone on Team A defeated anyone on Team B, then everyone on Team B was defeated by Mary.

5. Tom defeated at most one member of Team A.

III. Determine whether these sentences are true on the given diagrams: (16)

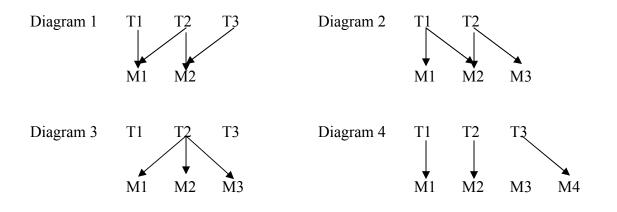
D2

D3

D4

D1

 $\begin{aligned} &\forall x(Mx \rightarrow \exists y(Ty \& Ayx)) \\ &\exists x(Mx \& \forall y(Ty \rightarrow Ayx)) \\ &\exists x(Tx \& \forall y(My \rightarrow \sim Axy)) \\ &\forall x(Tx \rightarrow \exists y \exists z(My \& Mz \& y \neq z \& Axy \& Axz)) \end{aligned}$



Prove these sequents: (35)

 $\begin{array}{l} \forall x \forall y (\sim Rxy \rightarrow Ryx), \forall x \forall y (Rxy \rightarrow Ryx) \models \forall x \forall y Rxy \\ \forall x (Px \rightarrow \sim Qx), \exists x (Sx \& Qx) \models \exists x (Sx \& \sim Px) \\ \exists x \forall y Rxy, \forall x \forall y (Rxy \rightarrow \sim Ryx) \models \forall x \exists y \sim Rxy \\ \exists x \forall y Rxy, \forall x ((Px \& \exists y Ryy) \rightarrow \forall y \sim Ryx) \models \forall x \sim Px \end{array}$